SNSB

Summer Term 2013

Ergodic Theory and Additive
Combinatorics
Laurenţiu Leuştean
11.06.2013

Seminar 7

(S7.1)
(i) $1_{X}: X \rightarrow X$, the identity on (X, \mathcal{B}, μ), is an invertible measure-preserving transformation.
(ii) The composition of two measure-preserving transformations is a measure-preserving transformation.
(iii) If (X, \mathcal{B}, μ, T) is a MPS, then $\mu\left(T^{-n}(A)\right)=\mu(A)$ for all $A \in \mathcal{B}$ and all $n \geq 1$.
(iv) If (X, \mathcal{B}, μ, T) is invertible, then $\mu\left(T^{n}(A)\right)=\mu(A)$ for all $A \in \mathcal{B}$ and all $n \in \mathbb{Z}$.

Proof. (i) Obviously.

(ii) Let $T:(X, \mathcal{B}, \mu) \rightarrow(Y, \mathcal{C}, \nu)$ and $S:(Y, \mathcal{C}, \nu) \rightarrow(Z, \mathcal{D}, \eta)$ be measure-preserving and let $A \in \mathcal{D}$. Then

$$
\mu\left((S \circ T)^{-1}(A)\right)=\mu\left(T^{-1}\left(S^{-1}(A)\right)\right)=\nu\left(S^{-1}(A)\right)=\eta(A)
$$

(iii) By induction on n.
$n=1$ by hypothesis.
$n \Rightarrow n+1: \mu\left(T^{-n-1}(A)\right)=\mu\left(T^{-1}\left(T^{-n}(A)\right)\right)=\mu\left(T^{-n}(A)\right)=\mu(A)$.
(iv) If $n \leq 0$ the result follows from (iii). Assume that $n \geq 1$. By induction on n.
$n=1: \mu(T(A))=\mu\left(T^{-1}(T(A))=\mu(A)\right.$.
$n \Rightarrow n+1: \mu\left(T^{n+1}(A)=\mu\left(T\left(T^{n}(A)\right)=\mu\left(T^{n}(A)\right)=\mu(A)\right.\right.$.
(S7.2) Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be probability spaces and $T: X \rightarrow Y$ be bijective such that both T and T^{-1} are measurable. The following are equivalent
(i) T is measure-preserving.
(ii) $\mu(B)=\nu(T(B)))$ for all $B \in \mathcal{B}$.
(iii) T^{-1} is measure-preserving.

Proof. (i) \Rightarrow (ii) Assume that T is measure-preserving. Then for all $B \in \mathcal{B}, \mu(B)=$ $\mu\left(T^{-1}(T(B))\right)=\nu(T(B))$.
(ii) \Leftrightarrow (iii) Obviously, since for all $B \in \mathcal{B},\left(T^{-1}\right)^{-1}(B)=T(B)$.
$\left(\right.$ ii $\Rightarrow(\mathrm{i})$ Let $C \in \mathcal{C}$. Then $T^{-1}(C) \in \mathcal{B}$ since T is measurable. Hence, $\nu(C)=\nu\left(T\left(T^{-1}(C)\right)\right)=$ $\mu\left(T^{-1}(C)\right)$.
(S7.3) Let $(X, \mathcal{B}),(Y, \mathcal{C}),(Z, \mathcal{D})$ be measurable spaces, $T: X \rightarrow Y, S: Y \rightarrow Z$ be measurable transformations.
(i) $U_{S \circ T}=U_{T} \circ U_{S}$.
(ii) U_{T} is linear and $U_{T}(f \cdot g)=\left(U_{T} f\right) \cdot\left(U_{T} g\right)$ for all $f, g \in \mathcal{M}_{\mathbb{C}}(Y, \mathcal{C})$.
(iii) If $f: Y \rightarrow \mathbb{C}, f(y)=c$ is a constant function, then $U_{T}(f)(x)=c$ for every $x \in X$.
(iv) $U_{T}\left(\mathcal{M}_{\mathbb{R}}(Y, \mathcal{C})\right) \subseteq \mathcal{M}_{\mathbb{R}}(X, \mathcal{B})$.
(v) If $f \in \mathcal{M}_{\mathbb{R}}(Y, \mathcal{C})$ is nonnegative, then $U_{T} f$ is nonnegative too, hence U_{T} is a positive operator.
(vi) For all $C \in \mathcal{C}, U_{T}\left(\chi_{C}\right)=\chi_{T^{-1}(C)}$.
(vii) If f is a simple function in $\mathcal{M}_{\mathbb{C}}(Y, \mathcal{C}), f=\sum_{i=1}^{n} c_{i} \chi_{C_{i}}, c_{i} \in \mathbb{C}, C_{i} \in \mathcal{C}$, then $U_{T} f$ is a simple function in $\mathcal{M}_{\mathbb{C}}(X, \mathcal{B}), U_{T} f=\sum_{i=1}^{n} c_{i} \chi_{T^{-1}\left(C_{i}\right)}$.

Proof. (i) Let $f \in \mathcal{M}_{\mathbb{C}}(Z, \mathcal{D})$. Then for all $x \in X$,

$$
\begin{aligned}
U_{S \circ T} f(x) & \left.=f((S \circ T)(x))=f(S(T x))=\left(U_{S} f\right)(T x)\right)=U_{T}\left(U_{S} f\right)(x) \\
& =\left(U_{T} \circ U_{S}\right)(f)(x) .
\end{aligned}
$$

(ii) Let $f, g \in \mathcal{M}_{\mathbb{C}}(Y, \mathcal{C})$ and $\alpha, \beta \in \mathbb{C}$. For all $x \in X$, we have that

$$
\begin{aligned}
U_{T}(\alpha f+\beta g)(x) & =(\alpha f+\beta g)(T x)=\alpha f(T x)+\beta g(T x) \\
& =\alpha U_{T}(f(x))+\beta U_{T}(g(x))=\left(\alpha U_{T}(f)+\beta U_{T}(g)\right)(x), \\
U_{T}(f \cdot g)(x) & =(f \cdot g)(T x)=(f(T x)) \cdot(g(T x))=\left(U_{T} f\right)(x) \cdot\left(U_{T} g\right)(x) \\
& =\left(\left(U_{T} f\right) \cdot\left(U_{T} g\right)\right)(x) .
\end{aligned}
$$

(iii) Obviously.
(iv) Obviously, since $f: Y \rightarrow \mathbb{R}$ implies $f \circ T: X \rightarrow \mathbb{R}$.
(v) Obviously.
(vi) follows easily.
(vii) Apply (vi).
(S7.4) Let (X, \mathcal{B}) be a measurable space and $T: X \rightarrow X$ be measurable.
(i) $U_{1_{X}}=1_{\mathcal{M}_{\mathbb{C}}(X, \mathcal{B})}$
(ii) $U_{T^{n}}=\left(U_{T}\right)^{n}$ for all $n \in \mathbb{N}$.
(iii) If $T: X \rightarrow X$ is bijective and both T and T^{-1} are measurable, then U_{T} is invertible and its inverse is $U_{T^{-1}}$. Furthermore, $U_{T^{n}}=\left(U_{T}\right)^{n}$ for all $n \in \mathbb{Z}$.

Proof. Easy.
(S7.5) Let (X, d) be a compact metric space and $T: X \rightarrow X$ be a continuous mapping. For all $l \geq 1$, there exists a multiply recurrent point for T, T^{2}, \ldots, T^{l}.

Proof. We use a lifting trick to reduce to the case where $T: X \rightarrow X$ is a homeomorphism. Let us consider $X^{\mathbb{Z}}$ with the product topology, and the shift

$$
S: X^{\mathbb{Z}} \rightarrow X^{\mathbb{Z}}, \quad(S \mathbf{x})_{n}=x_{n+1}
$$

It is easy to see that $\left(X^{\mathbb{Z}}, S\right)$ is an invertible TDS, and, moreover $X^{\mathbb{Z}}$ is metrizable, by B.7.6. Let

$$
\begin{equation*}
\tilde{X}=\left\{\mathbf{x} \in X^{\mathbb{Z}} \mid T x_{n}=x_{n+1} \text { for all } n \in \mathbb{Z}\right\} \tag{D.1}
\end{equation*}
$$

We shall prove that \tilde{X} is a nonempty closed strongly S-invariant subset of $X^{\mathbb{Z}}$.
If $\mathbf{x} \in \tilde{X}$, then $T(S \mathbf{x})_{n}=T x_{n+1}=x_{n+2}=T(S \mathbf{x})_{n+1}$, hence $S \mathbf{x} \in \tilde{X}$. Furthermore, if $\mathbf{y}=T^{-1} \mathbf{x}$, then $T y_{n}=T x_{n-1}=x_{n}=y_{n+1}$, hence $\mathbf{y} \in \tilde{X}$. Thus, $S(\tilde{X})=\tilde{X}$, so \tilde{X} is strongly S-invariant.

It is easy to see that \tilde{X} is closed. If $\left(\mathbf{x}^{(k)}\right)$ is a sequence in \tilde{X} and $\mathbf{x} \in X^{\mathbb{Z}}$ is such that $\lim _{k \rightarrow \infty} \mathbf{x}^{(k)}=\mathbf{x}$, then given $n \in \mathbb{Z}$, we have that

$$
T x_{n}=T\left(\lim _{k \rightarrow \infty} \mathbf{x}_{n}^{(k)}\right)=\lim _{k \rightarrow \infty} T\left(\mathbf{x}_{n}^{(k)}\right)=\lim _{k \rightarrow \infty} \mathbf{x}_{n+1}^{(k)}=x_{n+1}
$$

It remains to prove that \tilde{X} is nonempty. Let $x \in X$, and for each $p \geq 1$, define $\mathbf{z}^{P} \in X^{\mathbb{Z}}$ by

$$
z_{n}^{p}= \begin{cases}T^{n+p} x & \text { if } n \geq-p \\ \text { arbitrarily } & \text { if } n<-p\end{cases}
$$

Thus, $T z_{n}^{p}=z_{n+1}^{p}$ for all $n \geq-p$.
Since $X^{\mathbb{Z}}$ is a compact metrizable space, it is sequentially compact, hence $\left(\mathbf{z}^{p}\right)$ has a convergent subsequence. Thus, $\lim _{k \rightarrow \infty} \mathbf{z}^{p_{k}}=\mathbf{z}$ for some $\mathbf{z} \in X^{\mathbb{Z}}$ and some strictly increasing sequence $p_{1}<p_{2}<\ldots$.

We shall prove that $\mathbf{z} \in \tilde{X}$. Let $n \in \mathbb{Z}$, and $K \geq 1$ be such that $p_{K} \geq|n|$. Then $n \geq-p_{k}$, hence $T z_{n}^{p_{k}}=z_{n+1}^{p_{k}}$ for all $k \geq K$. By letting $k \rightarrow \infty$, we get that $T z_{n}=z_{n+1}$.

It follows that \tilde{X} is a compact metric space and $S: \tilde{X} \rightarrow \tilde{X}$ is a homeomorphism. We can apply now Corollary 1.7.3 for (\tilde{X}, S) to get a point $\mathbf{x} \in \tilde{X}$, and a sequence $\left(n_{k}\right)$ in \mathbb{N} with $\lim _{k \rightarrow \infty} n_{k}=\infty$ such that

$$
\lim _{k \rightarrow \infty} S^{n_{k}} \mathbf{x}=\lim _{k \rightarrow \infty} S^{2 n_{k}} \mathbf{x}=\ldots=\lim _{k \rightarrow \infty} S^{l n_{k}} \mathbf{x}=\mathbf{x}
$$

Let $p \in \mathbb{Z}$, and $i=1, \ldots, l$. Then

$$
\begin{aligned}
\lim _{k \rightarrow \infty} T^{i n_{k}} x_{p} & =\lim _{k \rightarrow \infty} x_{p+i n k} \quad \text { since } \mathbf{x} \in \tilde{X} \\
& =\lim _{k \rightarrow \infty}\left(S^{i n_{k}} \mathbf{x}\right)_{p}=x_{p}
\end{aligned}
$$

Thus, each component of \mathbf{x} is a multiply recurrent point for T, T^{2}, \ldots, T^{l}.
(S7.6) For any $A \in \mathcal{B}$, let us recall that

$$
\limsup _{n \rightarrow \infty} T^{-n}(A)=\bigcap_{n \geq 1} \bigcup_{i \geq n} T^{-i}(A)
$$

Then
(i) $\limsup _{n \rightarrow \infty} T^{-n}(A)$ is T-invariant.
(ii) $\mu\left(A \Delta \limsup _{n \rightarrow \infty} T^{-n}(A)\right) \leq \sum_{k=1}^{\infty} k \mu\left(A \Delta T^{-1}(A)\right)$. In particular, $\mu\left(A \Delta T^{-1}(A)\right)=0$ implies $\mu\left(A \Delta \underset{n \rightarrow \infty}{\limsup } T^{-n}(A)\right)=0$.

Proof. By A.2.7.(i) we have that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} T^{-n}(A) & =\left\{x \in X \mid x \in T^{-n}(A) \text { for infinitely many } n\right\} \\
& =\left\{x \in X \mid T^{n} x \in A \text { for infinitely many } n\right\} .
\end{aligned}
$$

Since A is measurable, we have that $T^{-n}(A)$ is measurable, hence $\limsup _{n \rightarrow \infty} T^{-n}(A)$ is measurable, by C.2.2.(iii).
(i) Let $x \in X$. Then $x \in T^{-1}\left(\underset{n \rightarrow \infty}{\limsup } T^{-n}(A)\right)$ iff $T x \in \limsup _{n \rightarrow \infty} T^{-n}(A)$ iff $T^{n+1} x \in A$ for infinitely many n iff $x \in \underset{n \rightarrow \infty}{\limsup } T^{-n}(A)$. Thus, $\limsup _{n \rightarrow \infty} T^{-n}(A)$ is T-invariant.
(ii) Let us note that
(a) if $x \in \limsup _{n \rightarrow \infty} T^{-n}(A) \backslash A$, then there exists some k such that $x \in T^{-k}(A) \backslash A$;
(b) if $x \in A \backslash \lim \sup T^{-n}(A)$, then there exists some k such that $x \notin T^{-k}(A)$, hence $x \in A \backslash T^{-k}(A)$.

Thus $A \Delta \limsup _{n \rightarrow \infty} T^{-n}(A) \subseteq \bigcup_{k \geq 1} A \Delta T^{-k}(A)$. It follows that

$$
\begin{aligned}
\mu\left(A \Delta \limsup _{n \rightarrow \infty} T^{-n}(A)\right) & \leq \mu\left(\bigcup_{k \geq 1} A \Delta T^{-k}(A)\right) \leq \sum_{k=1}^{\infty} \mu\left(A \Delta T^{-k}(A)\right) \\
& \leq \sum_{k=1}^{\infty} \sum_{i=0}^{k-1} \mu\left(T^{-i}(A) \Delta T^{-i-1}(A)\right)
\end{aligned}
$$

by repeatedly applying the "triangle" inequality C.4.4.(vi)

$$
=\sum_{k=1}^{\infty} \sum_{i=0}^{k-1} \mu\left(T^{-i}\left(A \Delta T^{-1}(A)\right)\right)
$$

$$
=\sum_{k=1}^{\infty} \sum_{i=1}^{k-1} \mu\left(A \Delta T^{-1}(A)\right)=\sum_{k=1}^{\infty} k \mu\left(A \Delta T^{-1}(A)\right)
$$

since T is measure-preserving.

