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(S7.1)

(i) 1X : X → X, the identity on (X,B, µ), is an invertible measure-preserving transfor-
mation.

(ii) The composition of two measure-preserving transformations is a measure-preserving
transformation.

(iii) If (X,B, µ, T ) is a MPS, then µ(T−n(A)) = µ(A) for all A ∈ B and all n ≥ 1.

(iv) If (X,B, µ, T ) is invertible, then µ(T n(A)) = µ(A) for all A ∈ B and all n ∈ Z.

Proof. (i) Obviously.

(ii) Let T : (X,B, µ) → (Y, C, ν) and S : (Y, C, ν) → (Z,D, η) be measure-preserving and
let A ∈ D. Then

µ((S ◦ T )−1(A)) = µ(T−1(S−1(A))) = ν(S−1(A)) = η(A).

(iii) By induction on n.
n = 1 by hypothesis.
n ⇒ n + 1: µ(T−n−1(A)) = µ(T−1(T−n(A))) = µ(T−n(A)) = µ(A).

(iv) If n ≤ 0 the result follows from (iii). Assume that n ≥ 1. By induction on n.
n = 1: µ(T (A)) = µ(T−1(T (A)) = µ(A).
n ⇒ n + 1: µ(T n+1(A) = µ(T (T n(A)) = µ(T n(A)) = µ(A).

(S7.2) Let (X,B, µ) and (Y, C, ν) be probability spaces and T : X → Y be bijective such
that both T and T−1 are measurable. The following are equivalent

(i) T is measure-preserving.



(ii) µ(B) = ν(T (B))) for all B ∈ B.

(iii) T−1 is measure-preserving.

Proof. (i)⇒(ii) Assume that T is measure-preserving. Then for all B ∈ B, µ(B) =
µ(T−1(T (B))) = ν(T (B)).
(ii)⇔(iii) Obviously, since for all B ∈ B, (T−1)

−1
(B) = T (B).

(ii)⇒(i) Let C ∈ C. Then T−1(C) ∈ B since T is measurable. Hence, ν(C) = ν(T (T−1(C))) =
µ(T−1(C)).

(S7.3) Let (X,B), (Y, C), (Z,D) be measurable spaces, T : X → Y, S : Y → Z be measur-
able transformations.

(i) US◦T = UT ◦ US.

(ii) UT is linear and UT (f · g) = (UT f) · (UT g) for all f, g ∈ MC(Y, C).

(iii) If f : Y → C, f(y) = c is a constant function, then UT (f)(x) = c for every x ∈ X.

(iv) UT (MR(Y, C)) ⊆ MR(X,B).

(v) If f ∈ MR(Y, C) is nonnegative, then UT f is nonnegative too, hence UT is a positive
operator.

(vi) For all C ∈ C, UT (χC) = χT−1(C).

(vii) If f is a simple function in MC(Y, C), f =
n
∑

i=1

ciχCi
, ci ∈ C, Ci ∈ C, then UT f is a

simple function in MC(X,B), UT f =
n
∑

i=1

ciχT−1(Ci).

Proof. (i) Let f ∈ MC(Z,D). Then for all x ∈ X,

US◦T f(x) = f((S ◦ T )(x)) = f(S(Tx)) = (USf)(Tx)) = UT (USf)(x)

= (UT ◦ US)(f)(x).

(ii) Let f, g ∈ MC(Y, C) and α, β ∈ C. For all x ∈ X, we have that

UT (αf + βg)(x) = (αf + βg)(Tx) = αf(Tx) + βg(Tx)

= αUT (f(x)) + βUT (g(x)) = (αUT (f) + βUT (g))(x),

UT (f · g)(x) = (f · g)(Tx) =
(

f(Tx)
)

·
(

g(Tx)
)

= (UT f)(x) · (UT g)(x)

=
(

(UT f) · (UT g)
)

(x).

(iii) Obviously.



(iv) Obviously, since f : Y → R implies f ◦ T : X → R.

(v) Obviously.

(vi) follows easily.

(vii) Apply (vi).

(S7.4) Let (X,B) be a measurable space and T : X → X be measurable.

(i) U1X
= 1MC(X,B)

(ii) UT n = (UT )n for all n ∈ N.

(iii) If T : X → X is bijective and both T and T−1 are measurable, then UT is invertible
and its inverse is UT−1 . Furthermore, UT n = (UT )n for all n ∈ Z.

Proof. Easy.

(S7.5) Let (X, d) be a compact metric space and T : X → X be a continuous mapping.
For all l ≥ 1, there exists a multiply recurrent point for T, T 2, . . . , T l.

Proof. We use a lifting trick to reduce to the case where T : X → X is a homeomorphism.
Let us consider XZ with the product topology, and the shift

S : XZ → XZ, (Sx)n = xn+1.

It is easy to see that (XZ, S) is an invertible TDS, and, moreover XZ is metrizable, by
B.7.6. Let

X̃ = {x ∈ XZ | Txn = xn+1 for all n ∈ Z}. (D.1)

We shall prove that X̃ is a nonempty closed strongly S-invariant subset of XZ.
If x ∈ X̃, then T (Sx)n = Txn+1 = xn+2 = T (Sx)n+1, hence Sx ∈ X̃. Furthermore,

if y = T−1x, then Tyn = Txn−1 = xn = yn+1, hence y ∈ X̃. Thus, S(X̃) = X̃, so X̃ is
strongly S-invariant.

It is easy to see that X̃ is closed. If (x(k)) is a sequence in X̃ and x ∈ XZ is such that
lim
k→∞

x(k) = x, then given n ∈ Z, we have that

Txn = T ( lim
k→∞

x(k)
n ) = lim

k→∞
T (x(k)

n ) = lim
k→∞

x
(k)
n+1 = xn+1.

It remains to prove that X̃ is nonempty. Let x ∈ X, and for each p ≥ 1, define zP ∈ XZ

by

zp
n =

{

T n+px if n ≥ −p

arbitrarily if n < −p.



Thus, Tzp
n = zp

n+1 for all n ≥ −p.
Since XZ is a compact metrizable space, it is sequentially compact, hence (zp) has a

convergent subsequence. Thus, lim
k→∞

zpk = z for some z ∈ XZ and some strictly increasing

sequence p1 < p2 < . . ..
We shall prove that z ∈ X̃. Let n ∈ Z, and K ≥ 1 be such that pK ≥ |n|. Then

n ≥ −pk, hence Tzpk

n = zpk

n+1 for all k ≥ K. By letting k → ∞, we get that Tzn = zn+1.

It follows that X̃ is a compact metric space and S : X̃ → X̃ is a homeomorphism. We
can apply now Corollary 1.7.3 for (X̃, S) to get a point x ∈ X̃, and a sequence (nk) in N

with lim
k→∞

nk = ∞ such that

lim
k→∞

Snkx = lim
k→∞

S2nkx = . . . = lim
k→∞

Slnkx = x.

Let p ∈ Z, and i = 1, . . . , l. Then

lim
k→∞

T inkxp = lim
k→∞

xp+ink since x ∈ X̃

= lim
k→∞

(

Sinkx
)

p
= xp.

Thus, each component of x is a multiply recurrent point for T, T 2, . . . , T l.

(S7.6) For any A ∈ B, let us recall that

lim sup
n→∞

T−n(A) =
⋂

n≥1

⋃

i≥n

T−i(A).

Then

(i) lim sup
n→∞

T−n(A) is T -invariant.

(ii) µ(A∆ lim sup
n→∞

T−n(A)) ≤
∞
∑

k=1

kµ(A∆T−1(A)). In particular, µ(A∆T−1(A)) = 0 im-

plies µ(A∆ lim sup
n→∞

T−n(A)) = 0.

Proof. By A.2.7.(i) we have that

lim sup
n→∞

T−n(A) = {x ∈ X | x ∈ T−n(A) for infinitely many n}

= {x ∈ X | T nx ∈ A for infinitely many n}.

Since A is measurable, we have that T−n(A) is measurable, hence lim sup
n→∞

T−n(A) is mea-

surable, by C.2.2.(iii).

(i) Let x ∈ X. Then x ∈ T−1

(

lim sup
n→∞

T−n(A)

)

iff Tx ∈ lim sup
n→∞

T−n(A) iff T n+1x ∈ A

for infinitely many n iff x ∈ lim sup
n→∞

T−n(A). Thus, lim sup
n→∞

T−n(A) is T -invariant.



(ii) Let us note that

(a) if x ∈ lim sup
n→∞

T−n(A) \ A, then there exists some k such that x ∈ T−k(A) \ A;

(b) if x ∈ A\ lim sup
n→∞

T−n(A), then there exists some k such that x /∈ T−k(A), hence

x ∈ A \ T−k(A).

Thus A∆ lim sup
n→∞

T−n(A) ⊆
⋃

k≥1

A∆T−k(A). It follows that

µ(A∆ lim sup
n→∞

T−n(A)) ≤ µ

(

⋃

k≥1

A∆T−k(A)

)

≤
∞
∑

k=1

µ(A∆T−k(A))

≤
∞
∑

k=1

k−1
∑

i=0

µ(T−i(A)∆T−i−1(A))

by repeatedly applying the ”triangle” inequality C.4.4.(vi)

=
∞
∑

k=1

k−1
∑

i=0

µ(T−i(A∆T−1(A)))

=
∞
∑

k=1

k−1
∑

i=1

µ(A∆T−1(A)) =
∞
∑

k=1

kµ(A∆T−1(A))

since T is measure-preserving.


